Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 357: 120730, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574705

RESUMO

Volatile organic compounds (VOCs) significantly contribute to ozone pollution formation, and many VOCs are known to be harmful to human health. Plastic has become an indispensable material in various industries and daily use scenarios, yet the VOC emissions and associated health risks in the plastic manufacturing industry have received limited attention. In this study, we conducted sampling in three typical plastic manufacturing factories to analyze the emission characteristics of VOCs, ozone formation potential (OFP), and health risks for workers. Isopropanol was detected at relatively high concentrations in all three factories, with concentrations in organized emissions reaching 322.3 µg/m3, 344.8 µg/m3, and 22.6 µg/m3, respectively. Alkanes are the most emitted category of VOCs in plastic factories. However, alkenes and oxygenated volatile organic compounds (OVOCs) exhibit higher OFP. In organized emissions of different types of VOCs in the three factories, alkenes and OVOCs contributed 22.8%, 67%, and 37.8% to the OFP, respectively, highlighting the necessity of controlling them. The hazard index (HI) for all three factories was less than 1, indicating a low non-carcinogenic toxic risk; however, there is still a possibility of non-cancerous health risks in two of the factories, and a potential lifetime cancer risk in all of the three factories. For workers with job tenures exceeding 5 years, there may be potential health risks, hence wearing masks with protective capabilities is necessary. This study provides evidence for reducing VOC emissions and improving management measures to ensure the health protection of workers in the plastic manufacturing industry.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Humanos , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , Medição de Risco , Indústria Manufatureira , Alcenos , China
2.
Sci Total Environ ; 925: 171542, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38453067

RESUMO

Nighttime ozone enhancement (NOE) can increase the oxidation capacity of the atmosphere by stimulating nitrate radical formation and subsequently facilitating the formation of secondary pollutants, thereby affecting air quality in the following days. Previous studies have demonstrated that when nocturnal ozone (O3) concentrations exceed 80 µg/m3, it leads to water loss and reduction of plant yields. In this study, the characteristics and mechanisms of NOE over Shandong Province as well as its 16 cities were analyzed based on observed hourly O3 concentrations from 2020 to 2022. The analysis results show that NOE predominantly occurred in the periods of 0:00-3:00 (41 %). The annual mean frequency of NOE events was ~64 days/year, approximately 4-7 days per month. The average concentration of nocturnal O3 peak (NOP) was ~72.6 µg/m3. Notably, high NOP was observed in the period from April to September with the maximum in June. Coastal cities experienced more NOE events. Typical NOE events characterized by high NOP concentrations in the coastal cities of QingDao, WeiHai and YanTai in June 2021 were selected for detailed analysis with a regional chemical transport model. The results showed that high levels of O3 in eastern coastal cities during NOE events primarily originate from horizontal transport over the sea, followed by vertical transport. During the daytime, O3 and its precursors are transported to the Yellow Sea by westerly winds, leading to the accumulation of O3 near the sea and coastline. Consequently, under the influence of prevailing winds, the movement of O3 pollution belts from the sea to land causes rapid increases in near-surface O3 levels. Meanwhile, vertical transport can also contribute to NOE in coastal areas. The high-level O3 in the upper atmosphere generally originates from long-distance transport and turbulent transport of O3 produced near the ground during the daytime. At night, the absence of chemicals that consume O3 in the upper air and descending air flow carries O3 to the near-surface. The impacts of other O3-depletion processes (such as dry deposition) on NOE are less pronounced than those of transport processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...